ЕГЭ по математике

СпецКурс ЕГЭ (М). Задание 13 часть 3. Логарифмические уравнения

Логарифмические уравнения требуют от вас знания основных формул с логарифмами, свойств логарифмической функции, а также внимательности. Обязательных условием решения такого уравнения является определение ОДЗ, которое следует из свойств логарифма. На тренировочных задачах вы сможете проверить свои знания, а также натренироваться в использовании формул с логарифмами.

СпецКурс ЕГЭ (М). Задание 13 часть 2. Показательные уравнения

Решение показательных уравнений основывается на знании свойств степеней (которые вы проходили еще в 7ом классе). Так что если вы попрактикуетесь на тренировочных заданиях, то на экзамене сможете легко справиться с любым примером.

СпецКурс ЕГЭ (М). Задание 13 часть 1. Тригонометрические уравнения

Решение тригонометрических уравнений - тема, опирающаяся на тригонометрические формулы и свойства тригонометрических функций. Эта тема может вам встретиться в заданиях 15 (при решении неравенств) и задании 18 (задачи с параметром).

17 Миссисипи или как вы решаете такие задачи?

Задача: решить следующие примеры в течение часа.

Не важно, решите вы их до конца или же не решите вовсе. Важно то, что вы сделаете с этими задачами в следующие 60 минут.

 

Задание 13. Решите уравнение:

Найдите все решения, принадлежащие промежутку

 

Задание 14. В правильной треугольной призме ABCA_1B_1C_1 боковые ребра равны 3, а стороны основания 1. Точка D является серединой ребра CC_1. Найдите угол между плоскостями ABC и ADB_1.

 

Задание 15. Решите неравенство:

 

 

Задание 16. В равнобедренном треугольнике ABC с углом 120 градусов при вершине A проведена биссектриса BD. В треугольника ABC вписан прямоугольник DEFH так, что сторона HF лежит на отрезке BC, а вершина E - на отрезке AB.
А) Докажите, что FH = 2DH

Б) Найдите площадь прямоугольника DEFH, если AB = 4.

 

Задание 17. Виктор планирует взять в июле кредит в банке на сумму 5 000 000 руб. сроком на 10 лет. 1 января каждого года долг по кредиту возрастает на 20%, с февраля по июнь каждого года Виктор должен выплачивать часть долга. При этом 1 июля каждого последующего года, долг Виктора перед банком должен уменьшаться на одну и ту же величину.
Сколько составила общая сумма, выплаченная Виктором банку, после погашения кредита?

 

Задание 18. Найдите все значения параметра а, при которых уравнение будет иметь равно три решения:

 

Задание 19. Дано некоторое натуральное число n такое, что числа n^2 и (n+24)^2 при делении на 100 дают одинаковый остаток.
А) Приведите пример такого числа.
Б) Сколько существует трехзначных чисел n?
В) Сколько существует двузначных чисел m, для каждого из которых существует ровно 36 трезначных чисел n, таких что числа n^2 и (n+m)^2 при делении на 100 дают одинаковый остаток?

 
Ответы на задания:
Задание 13. а)  \sqrt{2}, \, \, 4; б)  4.
 
Задание 14. arctg3
 
Задание 15.
 
Задание 16.
 
Задание 17. 10.5 млн. руб.
 
Задание 18.  \pm 1
 
Задание 19. а) n=13 (один из вариантов); б) 36; в) 36.
 
 
Фотки своих решений публикуйте у себя на странице ВКонтакте после лайка любого понравившегося вам видео. А ссылки на свои страницы оставляйте в коментариях на этой странице. так вы поможете моему сайту, а я - помогу вам!

Вариант 0. Задание 18 ЕГЭ по математике

Найти все значения параметра а, для каждого из которых неравенство имеет единственное решение.

Вариант 0. Задание 16 ЕГЭ по математике

В некоторый угол а вписаны две окружности, касающиеся друг друга. А. докажите, что отношение модуля разности радиусом к сумме радиусов окружностей является постоянной величиной. Б. Найдите радиус меньшей окружности, если угол равен 60 градусам, а радиус большей окружности равен 10.

Подготовка к ЕГЭ (М). Задание 13. Часть 1

В видео разбираются решения простых тригонометрических уравнений. Почему это важно? Потому что все уравнения и неравенства по тригонометрии сводятся к этим примерам.

Подготовка к ЕГЭ (М). Задание 13. Часть 2

В видео показано, как работает общий прием решения тригонометрических уравнений. В части 1 этого миникурса разбирались примеры решения простых тригонометрических уравнений. В следующем видео будет показано, как решать такие уравнения с помощью метода группировки.

Подготовка к ЕГЭ (М). Задание 13. Часть 3

Метод группировки для решения тригонометрических уравнений применим тогда, когда у вас есть 4-7 слагаемых с разными тригонометрическими функциями, содержащими различные аргументы.

Подготовка к ЕГЭ (М). Задание 13. Часть 4

Если в уравнении стоят синусы и косинусы в второй, третьей и более высоких степенях, то надо от них избавиться. Для этого есть формулы понижения степени (всего 2 формулы!), которые и надо использовать в таких примерах.