7777717

Tag Archives: учебник

Подготовка к ЕГЭ (М). Задание 13. Часть 1

В видео разбираются решения простых тригонометрических уравнений. Почему это важно? Потому что все уравнения и неравенства по тригонометрии сводятся к этим примерам.

Подготовка к ЕГЭ (М). Задание 13. Часть 2

В видео показано, как работает общий прием решения тригонометрических уравнений. В части 1 этого миникурса разбирались примеры решения простых тригонометрических уравнений. В следующем видео будет показано, как решать такие уравнения с помощью метода группировки.

Подготовка к ЕГЭ (М). Задание 13. Часть 4

Если в уравнении стоят синусы и косинусы в второй, третьей и более высоких степенях, то надо от них избавиться. Для этого есть формулы понижения степени (всего 2 формулы!), которые и надо использовать в таких примерах.

Подготовка к ЕГЭ (М). Задание 13. Часть 5

Решение однородных тригонометрических уравнений (это когда в правой части у вас стоит 0, а в левой каждое слагаемое имеет одну и ту же степень относительно переменной Х) решается делением всего уравнения на одну из тригонометрических функций.

Подготовка к ЕГЭ (М). Задание 13. Часть 6

Введение вспомогательного угла - один из приемов решения однородных линейных тригонометрических уравнений. Метод несложный, если решить самостоятельно хотя бы 1 пример!

Подготовка к ЕГЭ (М). Задание 13. Часть 7

Универсальная подстановки - способ приведения тригонометрического уравнения к обыкновенному алгебраическому (линейному или квадратному). Самое главное - после решения алгебраического уравнения не забыть вернуться к изначальной переменной! Иначе беда!

Подготовка к ЕГЭ (М). Задание 13. Часть 8

Как решать сложные тригонометрические уравнения? Также как и простые! Надо понять, что поможет вам упростить уравнение до простого вида, а затем применить уже знакомые методы и формулы. Самое главное - верить в свои силы и пробовать решать задачи.

15. Система случайных величин

Если наступление события зависит не от одной случайной величины, а от нескольких, то принято рассматривать систему случайных величин. Самый простой случай - система двух случайных величин, для которой принято находить математическое ожидание, дисперсию, среднеквадратичное отклонение, а также такие параметры, как ковариация (корреляционный момент) и корреляция.

Подготовка к ЕГЭ (М). Задание 13 - bezbotvy

Это пример сложного тригонометрического уравнения из задания 13 ЕГЭ по математике (профильный уровень). Чтобы научиться его решать, пройдите все темы миникурса Тригонометрические уравнения". Тогда этот пример не будет выглядеть сложным и непонятным.

3. Произведение двух матриц

Произведение двух матриц - это одна из простых операций, которую надо уметь проделывать с матрицами. Чтобы перемножить две матрицы, надо, чтобы у них было определенное число строк и столбцов. Остальное - дело техники.